二级c语言

. 大数的运算

二级c语言

1. 大数的运算原理

RSA算法依赖于大数的运算,目前主流RSA算法都建立在512位到1024位的大数运算之上,所以我们首先需要掌握大数(比如1024位)的运算原理。

大多数的编译器只能支持到32位(或64位)的整数运算,即我们在运算中所使用的整数必须小于等于32位,即0xFFFFFFFF,这远远达不到RSA的需要,于是需要专门建立大数运算库,来解决这一问题。

最简单的办法是将大数当作字符串进行处理,也就是将大数用10进制字符数组进行表示,然后模拟人们手工进行“竖式计算”的过程编写其加减乘除函数。但是这样做效率很低。当然其优点是算法符合人们的日常习惯,易于理解。

另一种思路是将大数当作一个二进制流进行处理,使用各种移位和逻辑操作来进行加减乘除运算,但是这样做代码设计非常复杂,可读性很低,难以理解也难以调试。

这里我们采用了一种介于两者之间的思路:将大数看作一个N进制数组,对于目前的32位系统而言,N可以取2的'32次方,即 0x100000000,假如将一个1024位的大数转化成0x10000000进制,它就变成了32位,而每一位的取值范围是0- 0xFFFFFFFF。我们正好可以用一个无符号长整数来表示这一数值。所以1024位的大数就是一个有32个元素的unsigned long数组。而且0x100000000进制的数组排列与2进制流对于计算机来说,实际上是一回事,但是我们完全可以针对unsigned long数组进行“竖式计算”,而循环规模被降低到了32次之内,并且算法很容易理解。

但考虑到乘法和除法,都要进行扩展才能进行快速的计算(如果把除法变减法而不扩展,速度将慢的无法忍受)。所以我们将N取2的16次方的,即 0xFFFF。每一位用unsigned short来表示,当进行乘除运算时,将short扩展成long,这是编译器所支持的,所以运算起来,比较快。

2. 大数的各种运算

这些运算都是常见的,同时也是常用的。要实现RSA算法,就必须先实现大数的这些运算。

1) 大数的比较。两个无符号或有符号的大数进行大小比较。大数和一般整数进行比较。大于,等于,小于,返回值各异,以区别比较结果。

2) 大数的赋值。将一个大数的值,符号等,逐位赋给另一个大数。将一般整数的值,符号等赋给一个大数。

3) 大数的加法。两个大数从低位到高位逐位相加,要考虑到进位的问题。或大数与一般整数的相加。

4) 大数的减法。两个大数从低位到高位逐位相减,要考虑到借位的问题。或大数与一般整数的相减。

5) 大数的乘法。两个大数的乘法,从一个大数的低位到高位,逐位与另一个大数相乘,然后将结果低位对齐相加,要考虑进位,类似于普通的竖式乘法。或大数与一般整数的乘法。

6) 大数的除法。两个大数的除法,从一个大数的高位到低位,逐步与另一个大数相除,要考虑借位,类似于普通的竖式除法。或大数与一般整数的乘法。

7) 大数的取余。两个大数的取余,类似于大数的除法,只是当除到底时,返回的是余数而已,也存在借位的问题。或大数于一般整数的取余。

8) 大数的欧氏算法。它是已知大数A、B,求满足AX≡1 MOD B的X,是最大公约数算法的扩展,同样用辗转相除法。再递归的过程中,两个参数都要用到,到要变化的。具体算法请参考源代码。

9) 大数的蒙氏算法。它是已知大数A、B和C,求X=A^B MOD C的值。要对指数进行逐渐降阶,直到变成2次方,也就是转换成乘法和取余运算。降阶的方法和算法的具体过程,请参考相关书籍和源代码。

10) 大数的最大公约数。求两个大数的最大公约数,用辗转相除法。

RSA算法的实现

A. 生成密钥函数

gChar gGenerateKey(gBigInt *n,gBigInt *e,gBigInt *d);

功能:该函数实现了产生密钥的功能。先产生两个随机的大素数p和q,然后计算n=p×q,随机产生(或固定)一个大数e,计算d,使得ed≡1 MOD (p-1)(q-1)。

参数:

n:两个大数的乘积,和e或d联合构成加密密钥或解密密钥。