高中数学归纳法证明题

数学归纳法是非常实用的,这类的归纳法可以证明很多的东西。下面就是本站小编给大家整理的用数学归纳法证明内容,希望大家喜欢。

高中数学归纳法证明题

  用数学归纳法证明公式

1/2+2/2^2+3/2^3+......+n/2^n=2 - n+2/2^n.

1/2+2/2^2+3/2^3+......+n/2^n=2 - (n+2)/2^n.

1、当n=1时候,

左边=1/2;

右边=2-3/2=1/2

左边=右边,成立。

2、设n=k时候,有:

1/2+2/2^2+3/2^3+......+k/2^k=2 - (k+2)/2^k成立,

则当n=k+1时候:有:

1/2+2/2^2+3/2^3+.....+k/2^k+(k+1)/2^(k+1)

=2 - (k+2)/2^k+(k+1)/2^(k+1)

=2-[2(k+2)-(k+1)]/2^(k+1)

=2-(k+3)/2^(k+1)

=2-[(k+1)+2]/2^(k+1)

  用数学归纳法证明解答

我觉得不是所有的猜想都非要用数学归纳法.

比如a1=2,a(n+1)/an=2,这显然是个等比数列

如果我直接猜想an=2^n,代入检验正确,而且对所有的n都成立,这时候干嘛还用数学归纳法啊.可是考试如果直接这样猜想是不得分的,必须要用数学归纳法证明.

我觉得如果是数列求和,猜想无法直接验证,需要数学归纳法,这个是可以接受的.但是上面那种情况,谁能告诉我为什么啊.我觉得逻辑已经是严密的了.

结果带入递推公式验证是对n属于正整数成立.

用数学归纳法,无论n=1,还是n=k的假设,n=k+1都需要带入递推公式验证,不是多此一举吗.我又不是一个一个验证,是对n这个变量进行验证,已经对n属于正整数成立了.怎么说就是错误的.

怎么又扯到思维上了,论严密性我比谁都在意,虽然是猜出来的,毕竟猜想需要,我的问题是--------这样的验证方式严不严密,在没有其他直接证明方法的情况下,是不是一定要用数学归纳法-------,并没有说这样就是对待数学的态度,没有猜想数学怎么发展.

这说明你一眼能看出答案,是个本领。

然而,考试是要有过程的,这个本领属于你自己,不属于其他人,比如你是股票牛人,直接看出哪支会涨哪支会跌,但是不说出为什么,恐怕也不会令人信服。

比如你的问题,你猜想之后,代入检验,验证成功说明假设正确,这是个极端错误的数学问题,请记住:不是验证了一组答案通过,就说明答案是唯一的!比如x + y = 2.我们都知道这是由无数组解的方程。但是我猜想x=y=1,验证成功,于是得到答案,你觉得对吗?所以你的证明方法是严格错误的!

你的这种思想本身就是经不起推敲的,学习数学不是会做多少题,而是给自己建立一套缜密的思维。你的这种思维在学习过程中是一个巨大的绊脚石,你现在做的就是假设某某正确,然后拼死维护它的正确,即使有不严密的地方你也视而不见。我说过,你有一眼看出答案的本领,这只是本领而已,填空题你有优势。但是如果你缺少了证明的思维,证明的本领,那你就成了一个扶不起来的阿斗。最可怕的是你的这个思想:褒一点说善于投机取巧,贬一点说,就是思维惰性,懒。

说说你的这道题,最简单的一道数列题,当然可以一下看出答案,而且你的答案是正确的。但是证明起来就不是那么容易了,答案不是看出来的,是算出来的。你的解法就是告诉大家,所有的答案都是看出来,然后代入证明的。假设看不出来怎么办?那就无所适从,永远也解不出来了!这就是你的做法带来的答案,你想想呢?你的这种做法有什么值得推广的?

OK,了解!

数学归纳法使被证明了的,证明数学猜想的严密方法,这是毋庸置疑的。在n=1时成立;假设n=k成立,则n=k+1成立。这两个结论确保了n属于N时成立,这是严密的。

你的例题太简单,直接用等比数列的`定义就可以得到答案(首项和公比均已知),不能说明你的证明方法有误。我的本意是:任何一种证明方法,其本身是需要严格证明的,数学归纳法是经过严格证明的;而你的证明方法:猜想带入条件,满足条件即得到猜想正确的结论。未经证明,(即使它很严密,我说即使)它不被别人认可。事实上,你的证明方法(猜想带入所有条件均成立)只能得到“必要”答案,并不“充分”,你想一下,A满足B就说A=B显然是不充分的。而数学归纳法充分必要,或者说“不大不小,不缩不放”,用你的方法可以猜想出多套答案,把所有猜想出来的答案归纳一下就是充分必要。

  高中数学证明方法

一、合情推理

1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;

2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。

二、演绎推理

演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。

三、直接证明与间接证明

直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

间接证明是相对于直接证明说的,反证法是间接证明常用的方法。假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。

四、数学归纳法

数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。